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1 Introduction
Since their inception, the social sciences have been split between qualitative and
quantitative approaches and one of the most challenging undertakings has been to
develop truly multi-method approaches that would combine the strengths of both
and minimize their weaknesses.

We are working on a method that relies on both qualitative and quantitative
techniques to increase the benefits of their complementarity. The former are em-
ployed at the stage of data collection – via in-depth interviews – and at the stage
of analysis, when the ethnographically established contextual knowledge is em-
ployed in an iterative conversation with the patterns of thought revealed in our
materials. Ethnographic coders – who are deeply immersed in the studied cul-
tures – generate rich, hierarchically organized sets of codes. We analyze them
not just to calculate frequencies of themes and motifs, but also to reveal their
pattern of connectivity as multi-level networks that are also represented in com-
pelling visualizations, that are the object of more analysis. In these visualizations,
an ethnographic corpus is represented as a network. The nodes in the network
correspond to ethnographic codes; the links connecting them represent the co-
occurrence of codes in the same part of the corpus [10]. We call this network a
codes co-occurrence network (henceforth CCN).

A problem that commonly arises is that the resulting networks are too large
and dense for human analysts to process visually. Network science has come up
with several (quantitative) techniques to reduce networks, based on identifying
and discarding the most important edges in a network. It is relatively easy to
apply them to this type of graphs. What is harder is to justify the choice of one
or the other of these techniques, and of the values assigned to the parameters
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that they usually require. These choices are all the more important in the current
context of growing doubts about the epistemological status of data processing
[3]. In this paper, we propose criteria that ”good” reduction techniques for a
CCN must meet. We next consider and compare – in the light of those criteria -
four candidate techniques, using data from three ethnographic research projects
that attack different research questions with similar methods. In doing so, we
highlight the affinity of each of the four techniques with a prominent method of
analysis associated in turn with an identifiable school of thought in sociology
or anthropology. Our objective is to contribute to the rigor and transparency of
the methodological choices of researchers when dealing with large ethnographic
corpora.

We proceed as follows. In section 2 we discuss work related to our own.
In section 3 we introduce the codes co-occurrence network, the network to be
reduced. In section 4 we present our data. Next, we lay out criteria for choosing a
technique to reduce a CCN for qualitative analysis, propose four such techniques,
and proceed to apply them to the data (section 5). In section 6 we discuss our
results, compare techniques with each other and propose a mapping of reduction
techniques onto methods of analysis widely used in sociology or anthropology.
Section 7 concludes.

2 Related work
The turn towards big data, fueled by radical improvements in computing power,
has led to renewed faith in the ability of quantitative work to provide more gen-
eralizable and yet valid knowledge (that is, knowledge that preserves some of the
richness of case-derived insights) than that obtainable by qualitative studies or
quantitative projects relying on smaller numbers of cases [3].

This has led to exciting progress. At the same time, however, it has high-
lighted a pressing need for methodological robustness. As scientific work based
on large datasets becomes methodologically innovative, more steps are needed to
move from raw data1 to final result. As a consequence, the methods themselves
may be hard to check against the insights derived from intimate familiarity with
specific cases. In combination with ”publish or perish” and with the premium
placed by journals on counterintuitive, glamorous results, this has led to various
epistemological crises. The replication crisis in psychology is the most famous
of them [23], but not the only one. For example, it is claimed that half of the
total expenditure on preclinical research in the US goes towards non-replicable
studies [14]. Other tendencies that worry quantitative scientists, and data scien-

1Though the concept itself of ”raw data” is deemed problematic [3].
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tists in particular, are: the persistence of citations of retracted papers [1]; the use
of biased, bad-quality data in machine learning papers [28]; and the acritical ac-
ceptance of raw data as representative of base reality, when in practice data are
constructed [3, 20]. All this leads to researchers obtaining divergent results de-
pending on ostensibly innocent choices about data cleanup prior to analysis [12].
Even controlled experiments with different researchers working with the exact
same datasets on the same research questions have led to spectacularly divergent
results, for reasons that are not yet entirely clear [5]. Qualitative sociological
and anthropological research is not expected to be replicable; rather, it derives its
status as reliable knowledge from the rigor and accountability of the methods it
applies. Therefore, careful, transparent choices about one’s method is necessary
at every step of the way, even more so when a research applies mixed methods
[3].

This paper is meant as a contribution to making such choices in the particular
case: that of reducing semantic networks that express qualitative data. The liter-
ature on semantic networks originates in computer science [32, 33, 36, 29]: its
main idea is to use mathematical objects – graphs – to support human reasoning.
Branching out from this tradition, we focus on the idea of network reduction. The
latter is useful because it makes the networks in question more amenable to visual
analysis, and helps researchers to appreciate, and interpret, the pattern of connec-
tivity across the codes in their data. In doing so, we factor in previous work on
the cognitive limits of humans to correctly infer the topological characteristics of
a network from visual inspection [15, 24, 25, 31]. Such work confirms that large
and dense networks are hard to process visually, and support the case for network
reduction.

It is important to maintain full awareness of the implications of applying each
technique. In this sense, this work is inscribed in the tradition of scholars who aim
to apply systematic visualization techniques, while still retaining sensitivity to in-
formants’ contextual, interactional, and socioculturally specific understandings of
concepts [13, 17, 34, 6]. In doing so, we are aware of the potential accountability
issues – and even crises – that could come with the adoption of mixed methods.
To prevent them, we fashion our mathematical techniques so that they do not vio-
late the specific requirements of knowledge creation in anthropology and its chief
method, ethnography.
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3 The codes co-occurrence network and its inter-
pretation

Consider an annotated ethnographic corpus. In what follows, we call any text
data encoding the point of view of one informant (interview transcript, field notes,
post on an online forum and so on) a contribution. Contributions are then coded
by one or more ethnographers. Coding consists of associating snippets of the
contribution’s text to keywords, called codes. The set of all codes in a study
constitutes an ontology of the key concepts emerging from the community being
observed and pertinent to that study’s research questions 2.

We can think of such an annotated corpus as a two-mode network. Nodes are
of two types, contributions and codes. By associating a code to a contribution, the
ethnographer creates an edge between the respective nodes3.

From the two-mode network described above, we induce, by projection, the
one-mode codes co-occurrence network (henceforth CCN). This is a network
where each node represents an ethnographic code. An edge is induced between
any two codes for every contribution that is annotated with both those codes. This
network is undirected (A→ B ≡ B→ A). There can be more than one edge be-
tween each pair of nodes.

This representation is both intuitive and useful. It is intuitive because it has a
clear-cut interpretation. We interpret co-occurrence as association. If two codes
co-occur, it means that one informant has made references to the concepts or en-
tities described by the codes in the same contribution, seen as a unit. Hence, this
person thinks there is an association between the two. It is useful because it shows
an association pattern for the whole conversation.

The downside is that CCNs tend to be resistant to visual analysis. This because
they are large and dense. They are large because a large study is likely to use
one or two thousand codes. They are dense as a result of the interaction of two
processes. The first one is ethnographic coding. A rich contribution might be
annotated 10 or 20 times, with as many codes associated to it. The second one
is the projection from the 2-mode codes-to-contribution network to the 1-mode
co-occurrence network. Recall that, in the latter, two codes are connected with an
edge whenever they occur on annotations that annotate the same contribution. So,
by construction, each contribution gives rise to a complete network (also called
a clique) of all the codes associated to it, each of which is connected to all the
others. Large, dense networks are known to be difficult to interpret by the human
eye [15, 24].

2For a complete description of the data generation process, see [10], section 3.
3In graph theory, nodes and edges are the fundamental unit of which graphs are formed. Nodes

are the entities being connected; edges, each linking two nodes, are the connecting entities.
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However, the existence of parallel edges in the one-mode CCN offers theoret-
ically grounded approaches to reduction.

4 Data and pre-processing
We use as data the annotated corpora from three ethnographic studies. One (OPEN-
CARE) concerns community-produced health and social care services [11]; the
second (NGI FORWARD), a policy-oriented discussion on the future of the Inter-
net [8]; the third (POPREBL), the lived experience of Eastern European populist
politics [9]. Though very different in scope, the communities being studied, and
the languages of the contributions, the corpora are roughly similar in size, each
with about 4,000 contributions by 300-400 informants. Their coding intensity is
also roughly similar, with about 6,000 annotations and 1,000-1,500 codes each
(table 1).

OPENCARE NGI FORWARD POPREBEL
informants 276 331 366
contributions 3,737 4,068 3,686
annotations 5,731 5,871 6,660
codes 1,391 1,109 1,605

Table 1: The datasets used: some descriptive statistics

We proceed as follows: first, from each dataset we induce the relative (unre-
duced) CCN. The resulting CCNs are too large and dense for visual analysis (Ta-
ble 2). Second, we apply to each of these stacked CCNs different techniques for
network reductions. The techniques and the rationale for choosing them are the
subject of Section 5. All techniques considered apply a reduction algorithm, the
effects of which can be calibrated using a tuning parameter (two parameters in the
case of the Simmelian backbone).

OPENCARE NGI FORWARD POPREBEL
nodes 1,391 1,109 1,605
edges 25,720 149,971 106,369

Table 2: Size and order of the unreduced and the stacked CCNs

For each corpus and each technique, we then observe how varying the value
of the tuning parameter influences the resulting reduced network. We attempt to
find interpretations for choosing specific values of the tuning parameter.

5



Next, for each corpus and each technique we compute the maximal inter-
pretable reduced network. By this, we mean the largest possible network that
is still amenable to visual analysis, based on the relevant literature on network
visualization [15, 24, 25].

Finally, for each corpus we assess the extent to which different reduction tech-
niques select the same codes. We do this by computing the pairwise Jaccard co-
efficients between the maximal interpretable reduced networks that obtain from
applying the different techniques.

5 Techniques for network reduction

5.1 What makes a good technique for network reduction?
Any network reduction entails a loss of information, and has to be regarded as a
necessary evil. Reduction methods should always be theoretically founded, and
applied as needed, and with caution. We propose four reductions techniques, each
one related to a distinct theoretical traditions in the social sciences, particularly
anthropology.

Following [18], we propose that a good reduction technique should:

1. Usefully support inference, understood as a simplifying interpretation of
the emerging intersubjective picture of the world. The main contribution
of network reduction to ethnographic inference is that it makes the CCN
small and sparse enough to be processed visually [24, 15]. A substantial
part of the human brain’s capacity is allocated to processing images, so it
makes sense to invest in good visualizations. A well-established literature
– and techniques such as layout algorithms – help us define what a ”good”
network visualization is.

2. Reinforce reproducibility and transparency. Reproducibility means that ap-
plying the same technique to the same dataset will always produce the same
interpretive result (even if the technique has a stochastic component). Trans-
parency means that how the technique operates is clear to the researcher,
who can therefore assess which technique best suits her purpose, and ex-
plain that assessment to her peers.

3. Not foreclose the possibility of updating via abductive reasoning. Algo-
rithms alone do not decide how parameters should be set to get optimal
readability. Rather, the values of the parameters are co-determined by the
ethnographers who possess rich empirical and theoretical knowledge of rel-
evant contexts.
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4. Combine harmoniously with other steps of the data processing cycle, such
as coding and network construction.

With that in mind, we turn to the discussion of candidate techniques. We claim
that all of them satisfy more or less equally conditions 3 (parameters are set by the
researchers), 4 (they use in a natural way research data and the way they organize
in network), and the reproducibility condition in 2 (the only stochastic component
come into play in layout algorithms, and they produce visually equivalent layouts).
Most of the discussion below therefore focuses on how well candidate techniques
support inference (condition 1) and how transparent they are (condition 2). In
other words, how useful the visualizations they produce are, and how intuitive the
method of building them is to ethnographers.

5.2 Association depth
A first way to reduce the CCN is the following. For each pair of nodes in the
network connected by at least one edge, remove all d edges connecting them, and
replace them with one single edge of weight d, regardless of how many informants
contributed to the analysed discourse. This yields a weighted, undirected network
with no parallel edges.

d has an intuitive interpretation in the context of ethnographic research. Con-
sider an edge e= code1↔ code2. d(e) is the count of the number of contributions
in which code1 and code2 co-occur. Since we interpret co-occurrence as associa-
tion, it makes sense to interpret d(e) as the depth of the association encoded in e.
This gives us a basis for ranking edges according to the value of d. The higher the
value of d of an edge, the more important that edge.

There is also a straightforward interpretation of the special case d(e) = 1. It
means the association between code1 and code2 occurs only once in the corpus.
It might be profoundly insightful, but it did not echo in the rest of the corpus. In a
sense, it could represent the discursive isolate, an analog of a statistical anomaly,
an outlier. Dropping all edges e : d(e) = 1 reduces the network at what seems to
be an acceptable cost.

Generalizing, we can drop all edges for which d(e) ≤ d∗. As the value of
d∗ increases, so does the degree to which the reduced network encodes high-
depth associations between codes. Choosing an appropriate level below which
to drop edges means managing a trade-off. The higher the threshold, the greater
the information loss. At the same time, though, the higher the threshold, the
greater the legibility of the reduced network, and the clearer the picture of the
basic structure of discourse in a given community, within which our respondents
create meaning and make sense of the world around them.
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(a) Proportional reduction in numbers of
nodes and edges of the CCN for differ-
ent values of d∗

(b) Visual density of the reduced CCN
for different values of d∗

Figure 1: Reducing codes co-occurrences networks, according to association
depth, in three ethnographic studies.

Figure 1a shows how the number of nodes and edges in the reduced co-
occurrences networks of three SSNA studies decrease as we increase the value
of d∗. The unreduced weighted networks for our three datasets have 1,000 to
1,500 nodes and 18,000 to 55,000 edges each. As d∗ increases, these numbers
decrease rapidly.

Just setting d∗ = 2 – which means only discarding one-off edges – leads to a
50-75% decrease in the number of edges. d∗ = 10 leads to a decrease of about
two orders of magnitude in the number of edges.

Figure 1b shows the decrease in network density (number of edges divided
by the number of nodes) as the technique is applied with increasing values of
association depth d∗. Unreduced networks are very dense, with 15-40 edges per
node. Discarding edges e,d(e) = 1 reduces density by about half, but in two out of
our three datasets they remain well above the value of 4 edges per node, sometimes
quoted as the one that makes for comfortable visual processing [24, 25].

5.3 Association breadth
A second way of reducing the CCN is the following. For all pairs of nodes
code1,code2 in the network, remove all edges e : code1 ↔ code2 connecting
them, and replace them with one single edge of weight b, where b is the num-
ber of informants who have authored the contributions underpinning those edges.
Like in section 5.2, this yields a weighted network of codes with no parallel edges,
but now edge weight has a different interpretation.

Recall that each edge e in the unweighted CCN is induced by one, and only
one, contribution in the corpus, which was coded with both code1 and code2. This
contribution has only one author. Instead of counting contributions to the cor-
pus, like interviews or forum posts, we are counting the related informants. This
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also has a straightforward interpretation for ethnographic analysis. The greater
the value of b(e : code1↔ code2), the more widespread the association between
code1 and code is in the community that we are studying. We interpret it as asso-
ciation breadth.

In ethnographic work, it is not rare that the same two codes occur over multiple
contributions of the same informant. This happens when some informants are
focused on a set of ideas, which recur when they make multiple contributions.
This means that there is a mathematical relation between association breadth b
and association depth d:

∀e : b(e)≤ d(e) (1)

Like for association depth d, the case where association breadth b(e) = 1 has a
straightforward interpretation. It means the association between code1 and code2

is endorsed by only one single informant. Again, it might be profoundly insight-
ful, but it did not occur to anyone else in the community. It could reflect an
idiosyncrasy of that particular person. Dropping all edges e : b(e) = 1 reduces the
network at what seems to be an acceptable cost.

As we did for depth, we can drop all edges for which b(e) ≤ b∗. As the
value of b* increases, so does the degree to which the reduced network encodes
broadly shared associations between codes. And again, the higher the thresh-
old, the greater the information loss, and the greater the legibility of the reduced
network, but thus also the clearer the picture of the cultural or ideological homo-
geneity in a studied community of discourse.

(a) Proportional reduction in numbers of
nodes and edges of the CCN for differ-
ent values of b∗

(b) Visual density of the reduced CCN
for different values of b∗

Figure 2: Reducing codes co-occurrences networks, according to association
breadth, in three ethnographic studies.

Figure 2a shows how the number of nodes and edges in the reduced co-
occurrences networks of three SSNA studies decreases as we increase the value
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of e∗. Setting e∗ = 2 – which means only discarding ”idiosyncratic” edges – leads
to a 85-90% decrease in the number of edges. d∗ = 4 leads to a decrease of about
two orders of magnitude in the number of edges.

Figure 2b shows the decrease in network density (number of edges divided
by the number of nodes) as the technique is applied with increasing values of
association depth b∗. Discarding edges e,b(e) = 1 reduces density by 70-75%,
but again in two out of our three datasets they remain well above the value of 4
edges per node.

5.4 Highest core values
An alternative way of identifying the most important edges in a CCN is to ex-
ploit the topology of the network. For example, a co-occurrence edge could be
considered important if it connects two nodes that are both connected to a large
number of other nodes. A community of such nodes can be identified by comput-
ing the CCN’s k-cores. k-cores are subgraphs that include nodes of degree at least
k, where k is an integer. They are used to identify cohesive structures in graphs
[16]. Random graphs have the property that a giant k-core appears in them when
their edge density becomes high enough [27].

After computing all the k-cores of a network, its nodes can be assigned a core
value. A node’s core value is the highest value of k for which that node is part of
a k-core.

To find the most important edges in the CCN, we again replace all edges
between any pair of connected codes code1 and code2 with one single edge
e(code1,code2). Next, we remove all the codes whose core values k are smaller
than 1, as well as their incident edges. If the graph thus reduced is still too large
and dense, we increase the value of k to the next integer and repeat, until the re-
duced graph is interpretable by visual analysis. Notice that this method ignores
edge weight; co-occurrence edges are included in the reduced network only on the
basis of the number of codes that the two co-occurring codes are connected to.

In contrast to the techniques of reduction presented in sections 5.2 and 5.2,
this approach to network reduction is not very effective at low levels of the tuning
parameter k. Only for high values of k does the CCN reach a substantial reduction
in nodes (under 100), and even then it maintains a very high number of edges
(1,000 to 10,000). As for edge density, it increases with k, staying well over the
legibility threshold of 4. This is shown in figure 3.

Persistent high density and limited reduction are artifacts of the way in which
k-core decomposition works. High-degree nodes are discarded last, so the highest-
k core is composed only of nodes with many connections to one another.
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(a) Proportional reduction in numbers of
nodes and edges of the CCN for differ-
ent values of k

(b) Visual density of the reduced CCN
for different values of k

Figure 3: Reducing codes co-occurrences networks, according to the core values
of nodes, in three ethnographic studies.

In any affiliation network, like networks of co-authorship of academic papers
or CCNs, the distribution of nodes’ core values is disproportionately influenced by
the presence of very large ”outlier” cliques. Some authors recommend dropping
these cliques from the data manually [16]. In our case, a long and interesting
contribution might be coded with as many as 50 codes. Each of those codes
becomes connected to the other 49 in the CCN, driving their core values to at
least 49, even if they do not appear anywhere else in the corpus. Moreover, in
general, when the distribution of core values is fat-tailed, higher-k cores tend to
be dominated by codes in the most heavily coded contributions, and so by the
most vocal informants, who are able to deliver long and dense contributions. This
is not necessarily what analysts want.

5.5 Simmelian backbone extraction
Another way to exploit the network’s topology to identify its most important edges
is to extract its Simmelian backbone. A network’s Simmelian backbone is the sub-
set of its edges which display the highest values of a property called redundancy
[26]. An edge is redundant if it is part of multiple triangles. The idea is that,
if two nodes have many common neighbors, the connection between the two is
structural. This method applies best to weighted graphs. Both association depth
and association breadth are natural measures of edge weight in CCNs. In what
follows, we use the former.

In order to reduce a network by extracting its Simmelian backbone, we pro-
ceed as follows. First, we choose a value for the granularity parameter k. For each
pair of nodes n1,n2 in the network, the incident edge e(n1,n2) is considered as
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strong depending on the overlap between the k strongest-tied neighbors of n1 and
those of n2, called redundancy. We set k to be approximately equal to the average
degree in each dataset. At this point, the network can be reduced based on the
redundancy value of each edge. We start dropping the lowest-redundancy edges,
then gradually increase the redundancy threshold to obtain smaller and smaller
networks.

As we filter for increasing values of minimum redundancy, the number of
nodes decreases, but not very rapidly and with a more or less linear pattern for all
datasets. The number of edges drops rapidly for low values of the minimum re-
dundancy, but then decreases much more slowly when the network’s minimum re-
dundancy rises above 5. Consequently, edge density sees a rapid drop in the early
phases of the reduction, after which it becomes more or less constant. Throughout
the reduction process, the density of all three datasets stays over 4 (figure 4).

However, networks reduced with this method appear more legible to human
analysts than those reduced with the highest core values method. This is because,
by construction, Simmelian backbone extraction tends to leave dense communi-
ties of nodes intact, while discarding edges that connect different communities.
As a consequence, reduced networks are highly modular, and feature connected
components4 breaking off the network’s main body: they can be visually inter-
preted as small networks of communities of nodes, instead of as large networks
of individual nodes (fig 5d. This appears to be semantically justified; the codes
within each of the communities are closely related. However, the same process
tends to break the reduced network down into many densely connected compo-
nents, which destroys structural information. So, with this technique, there is
a tradeoff between the reduction in the number of nodes and edges, on the one
hand, and the preservation of a recognizable overall structure, on the other.

4A connected component of a network is a subnetwork in which any two nodes are connected
to each other by paths, and which is connected to no additional vertices in the rest of the graph.
They look like ”islands” of nodes. Some connected components are visible at the top of Figure 5d.
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(a) Proportional reduction in numbers of
nodes and edges of the CCN for differ-
ent values of minimum edge redundancy

(b) Visual density of the reduced CCN
for different values of minimum edge re-
dundancy

Figure 4: Reducing codes co-occurrences networks, by the extraction of their
Simmelian backbones, in three ethnographic studies.

6 Discussion

6.1 Comparing reduction techniques
Reducing any network implies ranking its edges in order of importance, so that
the least important edges can be dropped to simplify visual analysis. In section 5
we introduced four techniques for reducing a CNN. These techniques employ two
different strategies to discover the CNN’s most important edges. Two of them – by
association depth and by association breadth – rank edges according to the value
that a chosen property, interpreted as edge weight, assumes for each individual
edge. The other two techniques – by highest core values and by Simmelian back-
bone extraction – use the topology of the network to rank the importance of the
edges (although the latter also employs a measure of edge weight to do so). In this
section we compare the relative merits of the two strategies and four techniques,
based on the criteria set in section 5.1. We discuss four aspects: interpretability
of the reduction techniques themselves; harmonious integration with the pre- and
post-reduction phases of the data processing cycle; quantitative effectiveness; and
preservation of structural information in the reduced networks. The discussion is
summarized in table 3 and exemplified by figure 5.
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Criteria ass. depth ass. breadth core values Simmelian backbone
1 yes yes somewhat yes
2 yes yes somewhat somewhat
3 yes yes no yes
4 yes yes no somewhat

Table 3: A comparison of four CCN reduction techniques against the criteria set
in section 5.1. 1: Usefully supports inference; 2: Reinforces reproducibility and
transparency; 3: Does not foreclose abductive reasoning; 4. Combines harmo-
niously with the other steps of the data processing cycle.

(a) By association depth (327 codes,
1,059 edges).

(b) By association breadth (193 codes,
642 edges).

(c) By highest core values (344 codes,
19,716 edges).

(d) By Simmelian backbone extraction
(1,368 codes, 13,428 edges).

Figure 5: Reduced networks of the POPREBEL CCN applying four techniques.

The two reduction techniques based on edge weight are likely to be more in-
tuitive to qualitative researchers without extensive training in network analysis.
The measures of edge weight we adopted are grounded in the familiar practice of
ethnographic coding; this results in a straightforward definition of what a strong
edge is, and how reduced networks obtain. By implication, these techniques ef-
fectively combine network reduction with the early (ethnographic coding and net-
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work induction) and late (analysis of the reduced network) phases of the data
processing cycle. Ethnographic coding drives the entire cycle.

Conversely, interpreting network reduction based on the highest core values
of nodes or on Simmelian backbone extraction requires a certain amount of topo-
logical thinking. While doing so is certainly possible to qualitative researchers,
it does require some extra effort. In this sense, these two techniques are a little
less transparent than the former two. These techniques also combine with ethno-
graphic coding upstream of reduction, but less so in the reduction phase itself,
as edge weight is irrelevant to the highest core value and only in part relevant to
”simmelianness”.

In terms of quantitative effectiveness, the techniques based on edge weight
outperform those based on topology. Both allow for fine-tuning between high in-
formation loss and readability; and, for all datasets, they allow to produce small,
low-density networks (figures 1 and 2). Reducing by highest core values does not
allow such granularity, because the highest-k cores are still a substantial part of
the unreduced networks; neither does it allow readability, because they are also
dense, far above the threshold for human interpretability [25]. The extraction of
a Simmelian backbone has the same issues, but they are mitigated by two factors.
First, the granularity parameter k can be increased to allow a more drastic reduc-
tion of the network. And second, the reduced networks are highly modular, and
that allows for better readability for a given network size and the identification of
clusters, if any, within it.

We now turn to how well structural information is preserved through network
reduction. The first two methods yield reduced networks that preserve structural
information, in the sense that they do not predetermine it: for example, the mod-
ularity of the reduced networks varies across our different datasets. The third
and fourth method use topological information for the reduction process itself,
and they both predetermine the structure of the reduced network. Reducing a
CCN to the subnetwork formed by the codes with the highest core value invari-
ably leads to a very dense network. The best a human analyst can do with it is
ignore the edges altogether, and treat it as a list of important codes. Reducing
it to a Simmelian backbone invariably leads to highly modular (thus legible) re-
duced networks. Unfortunately, as the value of the reduction parameter increases,
communities of codes break off from the main body of the network and form en-
tirely separate connected components; this destroys information about the overall
pattern of connectivity in the corpus.
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6.2 Mapping network reduction techniques onto methods of
analysis in sociology and anthropology

Deciding which network reduction technique is best suited to a particular research
project will largely depend on the researcher’s ontological and epistemological
beliefs, i.e. on assumptions about the nature of social reality and how this social
reality can be known, as well as on the nature of the project itself, particularly the
questions it asks.

Each of the four reduction techniques reveals a different set of attributes se-
mantic networks have. It also turns out that each technique bears a family resem-
blance to a prominent method of analysis associated in turn with an identifiable
school of thought in sociology or anthropology.

Determining association depth is in its essence a method of uncovering the
structure of culture (discourse or thought), a task placed in the center of anthropol-
ogy most prominently by Claude Levi-Strauss. His classical works Anthropologie
structurale [22] and La Pensée sauvage [21] initiated a whole host of structuralist
and post-structuralist approaches.

For post-structuralist sociologists and anthropologists, social relations can only
be understood by analysing how they are constituted and organised through dis-
course. In other words, social hierarchies, norms and practices are legitimised (or
delegitimised) by granting the meaning attached to specific concepts a dominant
position, enabling certain ideas to become hegemonic, i.e. widely accepted as
the ‘Truth’. For example, the idea that ethnic nations are natural entities grow-
ing out of shared kinship ties (all academic evidence to the contrary) is used to
legitimise political control by the core nation and the marginalisation of minor-
ity ethnicities. Moreover, discourse scholars work from the assumption that the
meaning respondents attach to floating signifiers is relational within a discourse.
Within a patriarchal discourse, the meaning attached to ‘woman’ is directly deter-
mined by the meaning attached to ‘man’, for instance. To understand the meaning
of concepts, it is thus essential to understand their interrelationships; discerning
which meanings are hegemonic further requires us to understand which interrela-
tionships between concepts are dominant. Focusing on association depth is thus a
useful way of bringing into sharper focus the interrelationships between concepts
that are most commonly used by our respondents, thereby providing a picture of
the basic structure of discourse in a given community, within which our respon-
dents create meaning and make sense of the world around them. It is important
to note that the decision to stop data collection upon reaching what is deemed
sufficient saturation, a common strategy in qualitative research, would skew the
results of this method.

For anthropologists, the concept of association breadth is most closely associ-
ated with network analysis, an approach whose classical formulations came from
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Jeremy Boissevain and his followers [4]. Since it helps to identify an important
attribute of networks not just among concepts but also actors who employ them,
it seems to be particularly useful in reconstructing the structures of communities
of discourse [37] or discursive fields [30]. In short, this reduction method is de-
signed to simultaneously capture information about connections between concepts
and between people who employ them; it reveals networks emerging among the
concepts used by the largest number of participants.

The technique based on core values of codes is designed to determine the cen-
trality of certain concepts in a discourse. While it does not allow for the reduction
of edges (as the number of edges is the information at the center of this approach),
it shows which concepts have most edges associated with them. It facilitates,
therefore, a more systematic determination which discursive elements constitute
what is known in cultural anthropology as root paradigms, key metaphors, domi-
nant schemas or central symbols of a given culture [35, 2].

Finally, the Simmelian backbone extraction can contribute to the discovery of
hegemonic and counter-hegemonic clusters (subcultures) of meaning in an ana-
lyzed body of discourse [7, 19]. No culture is fully integrated and each is sub-
jected to centripetal and centrifugal forces simultaneously. As a result, even in
the most “homogenous” cultures one can identify at least embryonic subcultures
or – in another formulation – for every hegemony there is a budding or fully ar-
ticulated counter-hegemony. The point is that a hegemony is usually built not on
single symbols or concepts but on their interconnected clusters. This reduction
technique helps to identify such clusters and facilitates the operationalisation of
their internal coherence.

6.3 Do different techniques select the same codes and edges?
A priori, we expect different reduction techniques to select into the reduced net-
works codes and co-occurrence edges that are different, but not completely differ-
ent from technique to technique. Different techniques prioritize different edges,
and, therefore, codes. At the same time, the key co-occurrences are likely to meet
the criteria of every technique. In order to quantify the extent to which different
techniques converge onto the same set of codes and edges, we proceed as follows.

First, we apply each of the four techniques to each of our three datasets. For
each technique-dataset pair, we compute a maximal interpretable network (MIN).
By this we mean the largest network that is still interpretable by a human ana-
lyst. We then take the four MINs of each dataset, and compare them pairwise by
computing the Jaccard indices on their nodes and edges.

The main difficulty with the above is to define the MINs. While graph layout
algorithms have focused on minimizing edge crossing, symmetry, and other such
layout properties, there is little research on how the visual representation of a

17



graph influences the perception of quantitative properties of that graph [31]. Some
attempts have been made to correlate graph attributes (like density and order) with
the ability of humans to correctly perceive basic graph properties like diameter or
shortest paths [15, 31]. We would instead like to use the CCN mostly to derive
insights on the overall shape of the association patterns in a large corpus. In the
absence of a systematic literature on the readability of graphs, we fall back on
the result that graphs become difficult to interpret once their number of edges
rises above four times the number of their nodes, confirmed by several authors
[15, 24, 25]. The MIN, then, becomes the largest reduced graph for which

E
N

< 4 (2)

Where E is the number of edges in the reduced network, and N the number of
its nodes.

This criterion does indeed provide a MIN when applied to reduction based on
d(e) and b(e). However, no amount of reduction based on highest core values and
Simmelian backbone extraction yields a reduced network that satisfies condition
2. For those techniques, we have to adopt other definitions of MIN.

For highest core values, we simply define the MIN as the size of the k–core
with the largest value of k in the unreduced network. This MIN is much too dense
to be interpreted as a graph, but it does provide the ethnographer with a list of
codes, that constitute the highest cohesion group of codes in the corpus.

For Simmelian backbone extraction, we exploit the property of Simmelian
backbones to filter out edges connecting different communities of nodes, preserv-
ing those that connect different nodes in the same community. This greatly in-
creases the visual legibility of communities of nodes [26]. However, as the value
of the reduction parameter increases, it produces reduced networks that break
down into several connected components, which destroys information on how
these communities connect to each other. The latter is clearly valuable to ethno-
graphers, because it is a part of the structure of the discourse in a corpus. So, we
define the MIN as the smallest Simmelian backbone of the original network that
still has a giant component.

7 Conclusions
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